UK Semiconductor Infrastructure Initiative Feasibility Study

Summary of findings

Andi Jones Nicky Athanassopoulou

12 July 2023

UK Semiconductor Infrastructure Initiative

- The newly formed Department for Science, Innovation and Technology (DSIT) has commissioned a study to understand the **technical** and **economic** feasibility of developing specific capabilities to support commercial R&D, grow the UK semiconductor sector and contribute to supply chain resilience.
 - WP1 Silicon manufacturing capability to support prototyping
 - WP2 Advanced packaging capability
 - WP3 Compound open-access foundry capability
 - WP4 Design IP/tooling capability

Department of Engineering

- WP5 Strategic coordination capability that would provide an institutional framework around the infrastructure components
- There are several opportunities for stakeholders from across industry and academia to contribute to the project.

UK Semiconductor Infrastructure Initiative Timeline

- The IfM Engage consortium is acting independently based on the Tender brief.
- All data collected (from surveys, interviews etc.) are anonymous and protected.

Government analysis

Implementations

Decisions

Existing infrastructure provision – Academic institutions

Location	Open access	Cle	an room spa	ice	Current capao levels	city / throughput per day?	Silicon processing	Compound Semiconductor processing	Other materials	Maximum Wafer size				
		< 5 ISO	5-7 ISO	>7 ISO	Users	Wafers				Lithography	Deposition	Etching	Packaging	Metrology
Northwest of England	Yes		1500		120 cleanroom users				2D materials, superconductors, ferromagnetic	150 mm (6'')	200mm (8")	150mm (6")	200mm (8")	150mm (6")
South of Enlgand	Yes		700			10			Nanomaterials	150 mm (6'')	100mm (4")	150mm (6")	150mm (6")	150mm (6")
Wales	Yes	100	900			20 (100 wafers per week)			Molecular semiconductors	200mm (8")	200mm (8")	200mm (8")	200mm (8")	200mm (8")
Southeast of England	Yes		140	600	10 (unspecifie	ed user or wafer)			Oxides, nitrides, metals	100mm (4")	150 mm (6'')	150 mm (6'')	150 mm (6'')	150 mm (6'')
South coast of England	Yes	52	1116	402	200+				Limited compound semiconductor capability on certain tools	200mm (8")	200mm (8")	200mm (8")	200mm (8")	
North of England	Yes	35	165	400		25				150 mm (6'')	150 mm (6'')	75mm (3")	100mm (4")	200mm (8")
North of England	Yes	96	318		30				Glasses, piezoelectrics	150 mm (6'')	200mm (8")	200mm (8")	150 mm (6'')	150 mm (6'')
South of England	Yes	40	988	129					Broad range including: Organic semicondcutors (dedicated cleanrooms), 2D materials, damond	200mm (8")	150 mm (6'')	100mm (4")	150mm (6'')	150mm (6'')
Wales	Yes		1350			10				200mm (8")	300mm (12")	200mm (8")	200mm (8")	200mm (8")
Scotland	Yes		500		25	10								
Scotland	Yes	20	980		Over 1000 p m	rocess steps per nonth			Lithium Niobate, Superconducting materials, Silicon Glass and Polymers	200mm (8")	200mm (8")	200mm (8")	300mm (12")	300mm (12")
Southwest England	Yes		200		8					150 mm (6'')	200mm (8")	100mm (4")	150 mm (6'')	150 mm (6'')
South of England	Yes		700			10			Nanomaterials	150 mm (6'')	100mm (4")	150mm (6'')	150 mm (6'')	150 mm (6'')
South of England	Yes		200							100mm (4")	200mm (8")	200mm (8")	100mm (4")	150mm (6'')
Scotland	Yes								Superconducting					
Southeast of England	Yes		100		10				ALD deposition	100mm (4")	150mm (6'')	100mm (4")	100mm (4")	100mm (4")
Scotland	Yes		200			50			Glass, SiC	200mm (8")	200mm (8")	200mm (8")	200mm (8")	200mm (8")
Northwest of England	Yes	100	1000	400					2D materials					
East of England	Yes					3-5		4	2D semiconductors	50mm (2")	50mm (2")	50mm (2")	50mm (2")	50mm (2")
Southeast of England	Yes		260						Most semiconductors	150mm (6'')	150mm (6'')	100mm (4")		200mm (8")
Northern Ireland	Yes		200						Quartz, Germanium	150mm (6'')	150mm (6'')	200mm (8")	150mm (6'')	150mm (6'')

Existing infrastructure provision – Commercial institutions

Location	Open Access	Clea	an room sp	ace	Current o through per	capacity / out levels day?	Silicon processing	Compound Semiconductor processing	Other materials	Maximum Wafer size that can be porcessed		Number of External Users			
		< 5 ISO	5-7 ISO	>7 ISO	Users	Wafers				Lithograp hy	Depositio n	Etching	Packaging	Metrolog y	
Scotland	Yes		1200			55				150mm (6")	150mm (6")	150mm (6")	150mm (6")	150mm (6")	23
Scotland	Yes	259	802.5	120		200			Borofloat	150mm (6")	150mm (6")	150mm (6")	150mm (6")	150mm (6")	12
Northern Ireland	No		8000			20			Magnetic materials, gold, all rare earth materials	200mm (8")	200mm (8")	200mm (8")	200mm (8")	200mm (8")	
Scotland	No		2000			13				100mm (4")	100mm (4")	100mm (4")	100mm (4")	100mm (4")	
Scotland	Yes		300			20000							300mm (12")		70
South of England	No		225	100		2				200mm (8")	200mm (8")	200mm (8")	200mm (8")	200mm (8")	
Northeast (England)	No		9542			20			GaAs, InP	150mm (6")					
Scotland	Yes								Design devices for all above technologies						12
Scotland	Yes			100		12					100mm (4")			150mm (6")	11
Wales	Yes														100
Scotland	Yes								SIc, LTO, LNO, Sapphire, Diamond,SOI, Silicon	300mm (12")					
Southwest England	Yes		50			1-1000			Any optical or semiconductor material						40
Northeast England	Yes	771	691					5	Novel functional and semiconductor materials	300mm (12")	300mm (12")	200mm (8")	200mm (8")	300mm (12")	4
Northeast England	No		9542			20				150mm (6")	150mm (6")		150mm (6")	150mm (6")	

1. Silicon manufacturing capability to support prototyping – User Needs

59 organisations responded

Types of chips and the node sizes required

(Ignoring the totals, the figure in each cell represents number of organisations requiring a type of IC at a particular node size. The totals indicate overall level of need)

			Node sizes							
		>90nm	90-65nm	45-28nm	22-20nm	18-10nm	7-5nm	3nm	<3nm	Total
	Analog/mixed signal	18	14	16	14	5	6	3	1	77
Type of P IC	Digital	7	8	12	14	8	9	7	4	69
	Photonics	7	5	3	4	1	0	0	0	20
	MEMS	6	2	2	2	1	0	0	0	13
	Memory (including next generation)	4	3	4	6	6	5	3	1	32
	Total	42	32	37	40	21	20	13	6	

45 organisations responded

2. Advanced packaging capability – User Needs

74 companies responded to Advanced Packaging capability

- Wafers sales
- System sales

Licensing
 Other

Unpackaged chip sales - Packaged device sales

NOW	Power	RF/Microwave	Photonics	Digital electronics	Sensors	Sum
Ceramic	5	6	7	2	4	24
Component	13	10	19	10	11	63
Metal	3	4	6	3	7	23
Plastics+	4	6	2	2	6	20
Grand Total	25	26	34	17	28	

FUTURE	Power	RF/Microwave	Photonics	Digital electronics	Sensors	Sum
Ceramic	2	3	3	0	1	9
Component	3	3	5	0	0	11
Hetro	1	1	1	0	0	3
Metal	1	0	2	0	0	3
Plastic+	1	2	2	2	2	9
Grand Total	8	9	13	2	3	

• The values represent the total number of entries of materials processed in each packaging application area.

3. Compound open-access foundry capability – User Needs

Category	(Current Materials		Future Materials				
1	GaAs, GaSb, InGaAsP, InGaSb, InGa	, InP, InSb, Other III:Antimoni	ides Ga	GaAs, GaSb, GaP, InGaAs, InP, InSb, Bismides, GaAs with quantum dot, InP with quantum				
			do	dot, Other III:Antomonides, Superlattices T2SL				
2	GaN, Cubic Gallium Nitride, SiN, AlG	aN	Ga	N, GaN on Diamond, SiN, Com	posites of nitrides with other	functional materials		
Others	Chalcogenide materials (3)		Ch	alcogenide materials (3)				
(3, 9, 11)	Thin film Lithium Niobate (9)		Th	in film Lithium Niobate (9)				
	Diamond (11)		Dia	amond (11)				
	Metamaterials		M	etamaterials				
	Copper Indium Gallium Sulphide							
4	Doped Graphene							
5&8	Silicon Photonics, SiGe		Ge	, Ge on insulator				
6	CMT							
7	SiC, Cubic SiC		SiC	C, Si on insulator				
10	Ga2O3, AgO, BTO		Ga	2O3, Thin film BTO				
		Current Compound	Semiconductor Materials a	nd their Applications				
Category	Power	Photonics	RF/ Microwave	Digital electronics	Sensors	Total		
1	1	23	8	2	7	41		
2	9	7	10	1	3	30		
3	1	3	0	2	1	7		
4	1	1	1	0	1	4		
5	0	1	3	0	0	4		
6	0	1	0	0	1	2		
10	10	1	0	1	1	13		
10 Tatal	2	2	0	0	0	4		
lotai	20	39	22	0	14	110		
		Future Compound	Semiconductor Materials a	nd their Applications				
Category	Power	Photonics	RF/ Microwave	Digital electronics	Sensors	Total		
1	1	3	10	1	5	20		
2	9	11	4	0	2	26		
3	1	1	3	1	1	7		
5	0	0	1	0	1	2		
7	9	1	2	2	2	16		
10	3	0	2	0	0	5		
Total	23	16	22	4	11	76		

4. Design IP/tooling capability – User Needs

Types of chip(s) designed / developed

(Values represent number of organisations)

Analog /	mixeu signai	

Photonics

MEMS

Memory (including next generation) Other (please specify)

	Analog Mixed Signal F ront End	Back- end VLSI (P&R, LVS, DRC)	Custom Layout tools	Digital Front End	Design Flow M ethodology	Foundry PDK access	Functional verification	Packaging design	Photonics Design Tools	Open- Source Design Tools	Optical Design	Thermal Design	Other (please specify)	Total
>90nm	17	14	14	16	11	11	14	9	8	7	3	4	3	131
90-65nm	13	14	13	15	10	8	11	5	5	5	2	4	2	107
45-28nm	16	15	15	19	11	12	15	6	4	6	1	6	4	130
22-20nm	14	14	13	17	9	12	14	7	4	5	1	5	4	119
18-10nm	9	11	8	10	5	8	10	4	2	3	0	3	2	75
7-5nm	6	6	5	6	3	4	5	3	1	1	1	2	2	45
3 nm	4	4	4	6	3	3	5	3	1	1	1	2	1	38
<3nm	2	2	2	4	2	2	3	1	0	0	0	0	1	19
Total	81	80	74	93	54	60	77	38	25	28	9	26	19	

Topics derived from User Needs Survey

1 – Silicon manufacturing capability to support prototyping	2 - Advanced packaging capability	3 - Compound open-access foundry capability	4 - Design IP/tooling capability
Si prototyping and piloting (low-volume manufacturing) facility for <u>65nm+ node size</u> (CMOS line with additional processing capabilities, e.g. for RRAM, Qubits, MEMS, etc.)	A specialist packaging facility, where the capital equipment for the RF packaging is located. This facility aims to support businesses and their R&D through provision of packaging capabilities.	An open access compound semiconductor foundry for the following materials GaAs, GaSb, GaP, INGaAsP, InGaSb, InGaP, InP, InSb, InGaAs, Bismides,GaAs with quantum dot, InP with quantum dot, Other III:Antimonides	Advanced CMOS design flow for high density, high performance digital devices for AI, telecoms etc.
Si prototyping and piloting (low-volume manufacturing) facility for <u>40nm+ node size</u> (CMOS line with additional processing capabilities, e.g. for RRAM, Qubits, MEMS, etc.)	A specialist packaging facility, where the capital equipment for the Optoelectronics packaging is located. This facility aims to support businesses and their R&D through provision of packaging capabilities.	An open access compound semiconductor foundry for Nitrides including GaN, GaN on Diamond, GaN on Silicon, AIGaN, SiN, Cubic Gallium Nitride	Standard CMOS design flow for mainstream, wide range commodity digital and/or mixed signal, standard analogue, and high voltage power management for Automotive, Neuromorphic
Si prototyping and piloting (low-volume manufacturing) facility for <u>28nm+ node size</u> (CMOS line with additional processing capabilities, e.g. for RRAM, Qubits, MEMS, etc.)	A specialist packaging facility, where the capital equipment for the Power packaging is located. This facility aims to support businesses and their R&D through provision of packaging capabilities.	An open access compound semiconductor foundry for Silicon Carbide	Optoelectronics design flow for data comms, data storage, telecoms, co-packaged optics, quantum etc.
Si prototyping and piloting (low-volume manufacturing) facility for <u><28nm node size</u> (CMOS line with additional processing capabilities, e.g. for RRAM, Qubits, MEMS, etc.)	A specialist packaging facility, where the capital equipment for the Digital Electronics pack aging is located. This facility aims to support businesses and their R&D through provision of packaging capabilities.	An open access compound semiconductor foundry for oxides including Ga ₂ 0 ₃ , Ag ₂ 0, BTO	Stand-alone MEMS design flow
	A specialist packaging facility, where the capital eq uipment for the Sensors packaging is located. This facility aims to support businesses and their R&D through provision of pac kaging capabilities.		
	An integrated packaging facility with capital equipm ent for all packaging application areas (RF/Optoe lectronics/Power/Digital Electronics/Sensors) with a long- term thinking about heterogenous packaging . T his facility aims to support businesses and their R& D through provision of packaging capabilities.		

Some overall barriers where government intervention maybe required

- Misalignment between end-user requirements and manufacturing capabilities.
- Skills shortage and lack of experienced semiconductor engineers available. The UK is not
 attractive to international talent as it offers low salaries and it has a high cost of living.
- Lack of collaboration and coordination between R&D and industry.
- Insufficient allocation of resources/ investment especially for scaling-up and manufacturing on a large scale.
- Lack of an ecosystem and access to facilities. There are few skilled suppliers and access to existing laboratories is difficult.

Join us in the drop-in sessions...Room 223

- 1. What unique capabilities and competences (infrastructure, equipment, skills, knowledge, accessive to markets, supply chains etc.) does the UK already have in this area?
- 2. What would be the **competitive advantage for the UK** to have or to build the unique capabilities in this area?
- 3. What are the **barriers / challenges** for generating these advantages?

